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H E A T  T R A N S F E R  IN A P L A N E  L A Y E R  O F  G R A Y  

A B S O R B I N G  M E D I U M  

A.  L .  B u r k a  a n d  N.  A.  R u b t s o v  

The kinetics of the heating of a plane layer  of g ray  absorbing medium by radiat ive-conductive 
heat t r ans fe r  are considered.  The nonstat ionary energy equation is reduced to a nonlinear 
integral equation by means of a Green ' s  function, and this is solved numerical ly  by the New- 
ton method. The resul ts  of the solution are presented in the form of the tempera ture  fields 
in the layer  for  var ious values of the defining pa ramete r s  (optical thickness,  radia t ive-  
conductive hea t - t r ans fe r  cr i ter ion,  hea t - t r ans fe r  c r i te r ion  at the boundaries).  

The heating of s emi - t r anspa ren t  s ta t ionary media  is effected by two t ime-vary ing  mechanisms of 
heat t r ans fe r :  molecular  heat conduction and thermal  radiation. 

For  a wide c lass  of modera te ly  rapid and rapid p rocesses ,  radiative heat t r ans fe r  depends only s l ight-  
ly on the t ime.  Hence, in the radiative hea t - t r ans fe r  energy equation the t e rm expressing the rate of change 
of the volume density of radiative energy is small ,  and may be neglected. Allowing for this limitation, the 
nonstat ionary energy equation of radiat ive-conductive heat t r ans fe r  may be wri t ten as follows: 

OT 
div (~grad T) -- div E = c? ~ (1) 

Here E is the radiat ion flux vector .  The remaining notation is of the general ly  accepted type. 

Prob lems  in the form of the energy equation (1) ar ise  f rom pract ical  requirements  of modern  t ech-  
nical optics associated with the kinetics of heating (or cooling) semi - t r ansparen t  heat-conducting mater ia l s  
(glass, c rys ta l s ,  etc.) by thermal  radiation [1-3]. However, there are hardly any s t r ic t  solutions of this 
kind of problem in existence.  

In this paper we shall give a one-dimensional ,  numerica l  solution to a boundary problem based on the 
energy equation (1), in which div E has two representa t ions :  the integrated form, and the approximation of 
radiative heat conduction. 

The integrated representa t ion for  div E [4] may be written: 
1 

dOd~ -- 2h [2Oa (~"~) - -  Wl'h (~) -- l Wz,h (~' z) Oa (z' "~) dz J 
o (2) 

W1, h (~) = a [(a1014 -~ 2a2rlO24K3 (h)) K 2 (q) -~ (a20~ 4 27 2alr~914K~ (h)) K~ (h -- q)] 

Wz, h (~, z) -- h {K1 ] q -- p] -~ 2~ [rl (K~ (p) -~ 2r2K3 (h) K 2 (h -- p)) K~ (q) + r 2 (K z (h -- p) ~- 2raK3 (h) K~ (p) K 2 (h - -  q))]} 

1 

1 I =i- -4r l r~Ka ~(h) ' K j ( ~ ) =  'v j - 2exp  ~ d v ,  p = h z ,  q = h  E 
0 

In the approximation of radiative heat conduction, div E takes the form 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhanlki i Tekhnicheskoi Fiziki, No. 1, pp. 156- 
159, January-February, 1972. Original article submitted May 25, 1970. 

�9 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15.00. 

145 



' / i I 

I : ' i l  

.• ~b/ t g (c) r 
,,,, [ 

l o --J 

Fig. I 

0.3 

0.5 

az 

Fig. 2 

r 
d| d 08d0  
0~, - - - d y  \ - ~ '  -~y] (3) 

r E T l El* \ ' ],~ \ 

Here 0, T . ,  a0, ~ 0i, El* , a i ,  ri ,  kj, h, ~, and r are,  respect ively,  the 
unknown dimensionless  t empera ture  of the medium, the charac te r i s t i c  t em-  
pera ture  of the medium, the S te fan-Bol tzmann constant,  the radiation absorp-  
tion coefficient, the equivalent boundary tempera tures ,  the hemispher ical  
densit ies of the radiation falling on the corresponding sur faces  of the layer ,  
the absorbing and reflecting powers of the corresponding surfaces  of the layer ,  
the exponential integrals ,  the optical thickness of the layer ,  the dimensionless 
coordinates ,  and the t ime (i = 1, 2; j = 1, 2, 3). The physical and optical prop-  
er t ies  of the medium are assumed independent of tempera ture  (n = 1). 

The mathematical  formulation of the boundary problem for the one- 
dimensional nonstat ionary energy equation may be writ ten in the following di-  
mensionless form inthe case of a heat-conducting medium on allowing for  (3): 

O~0 0ap O0 
a~---~ - s o--~ = a-~-, 0 < ~ ~< l ,  ~ > 0 (4)  

00 
~ -~- - ~ (o - ~ )  = o, ~ = o, �9 > o (5)  

00 
a, -~- + ~ (0-- v,) = 0, ~= l ,  v ~ 0  

0(L0)=0o.. o ~ l  

( aoT. a a ~ t 3 i ~  S=--y---~, ~ = - ~ ,  ~ =-X--=B 

(6) 

(7) 

Here v i are the external t empera tures  of the medium, 0 0 is the initial t empera ture  of the layer ,  S is 
the Stark cr i ter ion,  a i ,  fli are cer ta in  positive constants not vanishing simultaneously,  and B is the Blot 
cr i ter ion (i = 1, 2). 

Let us consider  the heating (cooling) of a flat l ayer  of gray heat-conducting medium subjected to the 
external  action of diffusely radiating and also convective heat flows. We shall assume that the rate  of heat-  
ing and the corresponding tempera ture  drops are not so large as to necess i ta te  allowing for the t e m p e r a -  
ture dependence of the radiation absorption coefficients ~< and the thermal  conductivity )t. 

As a defining tempera ture  we take the tempera ture  of the external ,  diffusely radiating source .  

According to (2), d~ /d~  constitutes an integral equation nonlinear with respec t  to 0, so that Eq. (4) 
becomes a nonlinear integrodifferential  equation. This prevents  us f rom obtaining a solution to the bound- 
ary problem (4)-(7) in closed form.  By using a Green 's  function we may reduce the boundary problem (4)- 
(7) to a functional equation (as we shall short ly  show, it will be convenient to use i terative methods to solve 
this numerically) 

O(F=,T)=-'~-{13wl[c~ch('l---F.)@~zsh(t--F~)] -~-[32v~[o~lchF~@~lsh~]}@ G(~,z) F(O,z,'Odz 
0 

(8) 
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Here  

G(~,z)= { (alchz-}-~lsh:z)[a~ch(t--~)-b~sh(t--~)l/ A, z ~<~ 
(axch~-[-~lsh~)[a2ch(t--z)+~2sh(t--z)][A, z>~ 

F o r  p u r p o s e s  of n u m e r i c a l  so lu t ion ,  Eq.  (8) is  c o n v e r t e d  into a r i t h m e t i c a l  f o r m  in  the fol lowing s e -  
quence .  The t i m e  d e r i v a t i v e  is  app rox ima ted  by a f i n i t e - d i f f e r e n c e  o p e r a t o r .  Then  for  each  m o m e n t  of 
t i m e  ~- the i n t e g r a l  i s  a p p r o x i m a t e d  by a Gauss  q u a d r a t u r e  f o r m u l a .  In this  way Eq. (8) is  r e duc e d  to a 
s y s t e m  of n o n l i n e a r  a l g e b r a i c  equa t ions .  The Newton i t e r a t i o n  method  ma y  be appl ied to the n u m e r i c a l  
so lu t ion  of th i s  k ind  of equa t ion  [5]. 

The r e s u l t s  of the so lu t ion  p r e s e n t e d  in  F i g s .  1-3  r e f l e c t  the hea t ing  k ine t i c s  of a g r a y  h e a t - c o n d u c t -  
ing m e d i u m  when one of the s u r f a c e s  of the l a y e r  (~ = 0) is  hea ted  by a convec t ive  flow with the t e m p e r a t u r e  

of the e x t e r n a l  m e d i u m  v I = 1, B 1 = 10, 01 = 1 and the o ther  s u r f a c e  of the l a y e r  (~ = 1) is  he ld  at a t e m p e r a -  
t u r e  v 2 = 0.2 {a~ = 0.2, a 2 = 0.8, r 1 = 0.8, r 2 = 0.2). In F ig .  l a  the t e m p e r a t u r e  d i s t r i b u t i o n  in the l a y e r  is  
g iven  for  0 0 = 0.2, S = 0.25, h = 1 and v a r i o u s  t i m e s  ~-. 

I t  is  a c h a r a c t e r i s t i c  f ea tu re  that ,  on p a s s i n g  to the s teady  s ta te  mode  (~- = 1), the t e m p e r a t u r e  curve  
has  a l i n e a r  c h a r a c t e r ,  as in  the c a s e  of pure  heat  conduc t ion .  Th i s  is  due to the fact  that  for  S = 0.25 the 
p r o p o r t i o n  of r a d i a t i v e  hea t  t r a n s f e r  is  not  p a r t i c u l a r l y  g r e a t .  

F i g u r e  l b  shows the t e m p e r a t u r e  f ie ld  unde r  the s a m e  condi t ions  as in  F ig .  l a ,  except  tha t  S = 2.5. 
We see  f r o m  the f igure  that ,  on p a s s i n g  to the s t eady  s ta te  mode ,  the t e m p e r a t u r e  c u r v e s  change t h e i r  
c h a r a c t e r  and b e c o m e  convex .  Th i s  i nd i ca t e s  the g r e a t e r  i n t e n s i t y  of hea t ing  a t t r i bu t ab l e  to the r a d i a t i v e  
componen t  of the to ta l  heat  t r a n s f e r .  

In F ig .  l c ,  which r e l a t e s  to S = 25.0 (0 0 = 0, v 2 = 0) we have a m o r e  obvious d e f o r m a t i o n  of the t e m -  
p e r a t u r e  p ro f i l e s  than  b e f o r e .  This  is  due to the p r e d o m i n a n t  ro le  of r a d i a t i o n  as opposed to m o l e c u l a r  
hea t  t r a n s f e r .  As the c o n t r i b u t i o n  of the r ad i a t i ve  componen t  to the to ta l  heat  t r a n s f e r  i n c r e a s e s ,  the t ime  
r e q u i r e d  for  the s y s t e m  to pas s  into the s t eady  s ta te  mode  d i m i n i s h e s .  This  is  p a r t i c u l a r l y  appa ren t  in the 
r e g i o n  of the b o u n d a r y  ad jacen t  to the hea t  s o u r c e .  On r e d u c i n g  the i n t e n s i t y  of heat  a c c e s s ,  not only the 
g e n e r a l  l eve l  of t e m p e r a t u r e  but  a lso the r a t e  of hea t ing  d i m i n i s h  (Fig. 2, in  which B 1 = 5 i n s t e a d  of the p r e -  
vious  B 1 = 10). We m u s t  say  a few words  on the c o n v e r g e n c e  of the i t e r a t i o n  p r o c e s s  u sed  in  the so lu t ion  
of Eq.  (8). The p r o c e s s  c o n v e r g e s  r ap id ly  for  0 -< h _< hmax ,  S -< 1. S t a r t i ng  f r o m  a c e r t a i n  value of h -> 
hma x and S > 1, the c o n v e r g e n c e  of the p r o c e s s  w o r s e n s  s h a r p l y .  S ta r t ing  f r o m  a c e r t a i n  i n s t a n t  of t i m e  ~-, 
the t e m p e r a t u r e  p ro f i l e s  become  u n s t a b l e .  In o r d e r  to r e m o v e  these  h a r m f u l  effects ,  the n u m b e r  of Gauss  
points  has  to be i n c r e a s e d ,  and th is  m e a n s  i n c r e a s i n g  the o r d e r  of the s y s t e m  of equa t ions  and hence  g r e a t -  
ly  i n c r e a s i n g  c o m p u t e r  t i m e .  

If the opt ica l  t h i c k n e s s  of the l a y e r  i s  su f f i c i en t ly  g rea t ,  the e n e r g y  equa t ion  (1) m a y  be w r i t t e n  in the 
fol lowing way, a l lowing for  the app rox ima te  r e p r e s e n t a t i o n  (3) for  the r a d i a t i o n  flux vec to r :  

020 0 / 16 03 \ 00 
0~ + ' - ~ S O ~ ) = ~ - ,  0 < ~ < l ,  ~ > 0  (9) 

Of p r a c t i c a l  i n t e r e s t  is the so lu t ion  of Eq. (9) wi th  the fol lowing b o u n d a r y  cond i t ions :  

00 
oR- = s [o~ (~, ,) -- t], ~ = 6 (1 O) 
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The boundary problem (10), (11) may be reduced by means of a Green ' s  function to the functional 
equation 

F(O) = o 

Here 

1 
F(O)~[OI__O(~ ~f)_~fG(~,z ) ~  ~00 dz]+~' { (1-- ~) [~ -- 04 (0, ~)] 

o 

X[I+--~S08(O,~)] ' ' (;(~,z) / ((z--i),  ~>~ +'3-~-[0~ - 0  (~,~)1 t ,  = 

(11) 

(12) 

The ffmctional equation (12) contains two unknown functions 0 ( ~, ~') and 0 (0, T). Putting ~ = 0, we de-  
r ive yet  another equation f rom (12) to c lose the sys tem.  Thus the original boundary problem (10), (11) r e -  
duces to a sys tem of two functional equations 

[0 (~, ~), 0 (0, ~)] = 0, F1 [0 (~, T), 0 (0, ~)] = 0 (13) 

As before,  we c a r r y  out an ari thmetic convers ion and reduce (13) to a sys tem of (In + 1) nonlinear 
algebraic equations for  which a numerical  solution may be achieved by the Newton method of i terat ion.  

Some resul t s  obtained by a numerical  solution of Eq. (13) for the conditions 00 = 0, 05 = 1, S = 10 and 
various values of h are  presented in Fig. 3. 

Figure 3a and 3b shows the resul ts  of the calculation for  h = 40 and h = 4. The role of the optical 
thickness in creat ing the t empera tu re  field for  a fixed pa rame te r  S (character izing the radiat ion-conduction 
relationship in the total heat flow) appears  ve ry  c lear ly  in these f igures .  

This is ref lec ted  in the cha rac te r  of the tempera ture  profi les throughout the whole layer ,  including 
the ext remely  charac te r i s t i c  tempera ture  jumps in t ime at the boundary. We see that on increas ing h the 
rate of heating of the whole l ayer  diminishes considerably.  
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